[1] 刘明,张莉,王军邦,等. 草地退化及恢复治理的文献计量学分析[J]. 中国草地学报,2020,42(6):91-100 [2] 马玉寿,郎百宁. 建立草业系统恢复青藏高原"黑土型"退化草地[J]. 草业科学,1998,15(1):6-10 [3] 杨军,詹伟,王向涛. 10年围栏封育对藏北退化高寒草甸植物群落特征的影响[J]. 中国草地学报,2020,42(6):44-49,140 [4] 贾慎修,贾志海,史德宽. 补播是改良退化草地的有效途径[J]. 草业科学, 1989,6(6):8-12 [5] 王博,蔺雄奎,冯占荣,等. 补播乡土牧草对荒漠草地土壤持水性及植被生物量的影响[J]. 草业科学,2023,40(9):2247-2256 [6] 杨增增,张春平,董全民,等. 补播对中度退化高寒草地群落特征和多样性的影响[J]. 草地学报,2018,26(5):1071-1077 [7] 姬万忠,王庆华. 补播对天祝高寒退化草地植被和土壤理化性质的影响[J]. 草业科学,2016,33(5):886-890 [8] 张倩,王志成,蒲强胜,等. 不同管理模式对甘南高寒草甸碳储量的影响[J]. 草地学报,2020,28(2):529-537 [9] 刘涛,朱迪,吕婷,等. 青海湖区芨芨草草原土壤养分对翻耕和补播措施的响应[J]. 植物研究,2021,41(2):270-280 [10] 尹亚丽,李世雄,马玉寿. 人工补播对退化高寒草甸土壤真菌群落特征的影响[J]. 草地学报,2020,28(6):1791-1797 [11] 段丽辉,刘晓丽,韩冰,等. 乡土物种补播对青藏高原高寒草甸群落稳定性的影响[J]. 草地学报,2021,29(8):1793-1800 [12] 董世魁. 高寒地区多年生禾草混播草地群落稳定性及其调控机制研究[D]. 兰州:甘肃农业大学,2001:109-118 [13] 赵文,尹亚丽,李世雄,等. 中度退化草地补播10年后土壤微生物特征研究[J]. 生态环境学报,2020,29(12):2365-2372 [14] 温超,单玉梅,李良臣,等. 复合微生物肥料对科尔沁羊草割草场植物群落多样性和生产力的影响[J]. 草地学报,2017,25(5):952-957 [15] CHEN Y,JIANG Z,WU D,et al. Development of a novel bio-organic fertilizer for the removal of atrazine in soil[J]. Journal of Environmental Management,2019,233:553-560 [16] 张海娟,周学丽,芦光新,等. 有机肥与补播对退化人工草地植被与土壤的影响[J]. 中国草地学报,2023,45(2):67-75 [17] WANG Y,LU G,YU H,et al. Meadow degradation increases spatial turnover rates of the fungal community through both niche selection and dispersal limitation[J]. Science of the Total Environment, 2021, 798(10):149362 [18] 王英成,姚世庭,金鑫,等. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报,2022,31(4):695-703 [19] DONG L,LI J,SUN J,et al. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau[J]. Scientific Reports, 2021, 11(1):11538 [20] 纳小凡,郑国琦,彭励,等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报,2016,53(1):241-252 [21] 柴瑜,李希来,马盼盼,等. 施肥和控鼠对退化高寒草甸植物-土壤-微生物碳氮磷化学计量特征的影响[J]. 中国草地学报,2023,45(1):12-22 [22] MOMMER L,COTTON TEA,RAAIJMAKERS J M,et al. Lost in diversity:the interactions between soil-borne fungi, biodiversity and plant productivity[J]. New Phytologist,2018,218(2):542-553 [23] 吴宛萍,马红彬,陆琪,等. 补播对宁夏荒漠草原植物群落及土壤理化性状的影响[J]. 草业科学,2020,37(10):1959-1969 [24] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:146-269 [25] NOSSA C W,OBERDORF W E,YANG L,et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome[J]. World Journal of Gastroenterology,2010,16(33):4135-44 [26] XIONG J B,LIU Y Q,LIN X G,et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J]. Environmental Microbiology, 2012, 14(9), 2457-2466 [27] CALLAHAN B J,MCMURDIE P J,ROSEN M J,et al. DADA2:High-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581-583 [28] BOLYEN E,RIDEOUT J R,DILLON M R,et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.[J]. Nature Biotechnology,2019,37(8):852-857 [29] CHAO A,BUNGE J. Estimating the number of species in a stochastic abundance model[J]. Biometrics,2002,58(3):531-539 [30] HILL C T,WALSH A K,HARRIS A J,et al. Using ecological diversity measures with bacterial communities[J]. FEMS Microbiology Ecology,2003,43(1):1-11 [31] 于冰,宋阿琳,李冬初,等. 长期施用有机和无机肥对红壤微生物群落特征及功能的影响[J]. 中国土壤与肥料,2017(6):58-65 [32] 蒋德明,苗仁辉,押田敏雄,等. 封育对科尔沁沙地植被恢复和土壤特性的影响[J]. 生态环境学报,2013,22(1):40-46 [33] 谢田朋,张建,柳娜,等. 当归不同生长时期根际土壤酶活性及微生物群落结构变化[J]. 土壤通报,2023,54(1):138-150 [34] 赵阳阳,刘银双,宋瑶,等. 设施番茄种植年限对土壤理化性质及微生物群落的影响[J]. 环境科学,2023,44(12):6982-6991 [35] 王宁,南宏宇,冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响[J]. 应用生态学报,2020,31(1):173-181 [36] 孙弘哲,马大龙,臧淑英,等. 大兴安岭多年冻土区不同林型土壤微生物群落特征[J]. 冰川冻土,2018,40(5):1028-1036 [37] 徐志伟,陈学梅,魏云林,等. 基于宏基因组分析纳帕海高原湿地微生物及其碳氮代谢多样性[J]. 生物工程学报,2021,37(9):3276-3292 [38] 邓辉,王成,吕豪豪,等. 堆肥过程放线菌演替及其木质纤维素降解研究进展[J]. 应用与环境生物学报,2013,19(4):581-586 [39] 李善家,王福祥,从文倩,等. 河西走廊荒漠土壤微生物群落结构及环境响应[J]. 土壤学报,2022,59(6):1718-1728 [40] YANG W,JEELANI N,XIA L,et al. Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China[J]. Plant and Soil,2019,442(1-2):215-232 [41] 朱书红,辉朝茂,赵秀婷,等. 甜龙竹不同种植年限对土壤真菌群落的影响[J]. 环境科学,2023,44(6):3408-3417 [42] SAJJAD A,MUHAMMAD N,LATIF A K,et al. Sphingomonas:from diversity and genomics to functional role in environmental remediation and plant growth[J]. Critical Reviews in Biotechnology,2020,40(2):1-15 [43] YANG S,ZHANG X,CAO Z,et al. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation[J]. Microbial Biotechnology,2014,7(6):611-20 [44] DAIMS H,LEBEDEVA EV,PJEVAC P,et al. Complete nitrification by Nitrospira bacteria[J]. Nature,2015,528(7583):504-509 [45] YANG F,JIANG H,CHANG G,et al. Effects of Rhizosphere Microbial Communities on Cucumber Fusarium wilt Disease Suppression[J]. Microorganisms,2023,11(6):1576 [46] 朱国洁,张娜,杜雯,等. 氨氧化微生物在氮循环中的生态功能及其影响因子[J]. 天津农业科学,2015,21(12):48-53 [47] DI J H,CAMERON C K,SHEN P J,et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience,2009,2(9):621-624 [48] ZHANG C B,REN C H,WANG Y L,et al. Uncovering fungal community composition in natural habitat of Ophiocordyceps sinensis using high-throughput sequencing and culture-dependent approaches[J]. BMC Microbiology,2020,20(1):331-331 [49] 孔亚丽,秦华,朱春权,等. 土壤微生物影响土壤健康的作用机制研究进展[J]. 土壤学报,2024,61(2):331-347 [50] 邓正昕,高明,王蓥燕,等. 化肥减量配施有机肥对柠檬根际/非根际土壤细菌群落结构的影响[J]. 环境科学,2023,44(2):1074-1084 [51] 司亚坤. 被孢霉属真菌介导潮土团聚体形成与磷周转的机制及应用[D]. 郑州:河南农业大学,2024:45-49 [52] JOHNSON JM,LUDWIG A, FURCH ACU,et al. The beneficial root-colonizing fungus mortierella hyalina promotes the aerial growth of arabidopsis and activates calcium-dependent responses that restrict alternaria brassicae-induced disease development in roots[J]. Molecular Plant-Microbe Interactions,2019,32(3):351-363 [53] CHANG J J,DUAN Y J,DONG J,et al. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. Fungus,DC-F1,with biochar:Performanceand the response of soil fungal community[J]. Science of the Total Environment,2019,671:676-684 |